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1 Inferring unknown properties: basal 

friction. 
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ISSM team-member: Mathieu Morlighem 
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2 Need for higher-order models. 
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ISSM includes 2D (a), higher-order 3D (b) and 3D Full-
Stokes models.  
Full-Stokes models are required near the grounding line -> 
computational challenge. 

ISSM team-member: Mathieu Morlighem 
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3 Dataset assimilation 
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Datasets collected for several decades do not match, both in time and way they 
are interpolated, leading to modeling issues for spin-up, such as artificially large 
thinning and thickening rates. 

(a) Ice velocity (m/yr) of 79north Glacier, 
NE Greenland, measured from ERS-1/2 
radar interferometry in 1996. 

(b) ice thickness from N. Reeh with 
flight tracks from 1998 indicated as 
black lines 

(c) ice flux divergence combining ice 
velocity and ice thickness reveals 
large rates of thinning/thickening on 
grounded ice that are not physical. 

ISSM team-member: Helene Seroussi 
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Thickness of 79North Glacier, Greenland, from (a) Kriging, (b) mass 
conservation; and flux divergence (m/yr) from (c) Kriging, (d) mass 
conservation (note the difference in color scale) 
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•  ISSM implement mass conserving 

interpolations, to reduce data 
inconsistencies. 

• Better spin-up of transient ice flow 
models, better projections into the 
future.  
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4 Model patching 

Several models to represent ice sheet flow equations : 

1/13/12 ISSM – January 2012 8 

ISSM team-member: Helene Seroussi 

“Everything should be made as simple as possible, but no simpler” Albert Einstein 

Combine models to improve simulations accuracy and robustness  
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Greenland ice flow model using background simple 3D Pattyn model, with more 
complex 3D full-Stokes patches where needed. 
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Background model 3D Pattyn. 
Patches are 3D full-Stokes (more 

complex, more accurate) 
Resulting modeled velocity (m/yr) 

We augment simple models with more complex ones where needed, in order to optimize 
the computational time for large scale ice flow models. 
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5 Parameterization of basal processes 
 

•  To model land-to-sea ice “flow” accurately, we must better understand 
how friction at the bottom of glaciers relates to ice velocity & thickness 

•  Standard model: 

•  Observations (ice surface velocity, thickness, topography, etc.) help…   

à  Solve for unknown parameters (α if p & q assumed; p & q if α assumed) 

à  Understand how parameters may change for given physical conditions under 
ice (e.g., where observations are sparse/non-existent)  

 
 
 
 
  

1/13/12 

!ubase =!Neff
!q !! base

p
Velocity 

friction Thickness  
dependent term 

Exponents, q & p, 
vary & are not 
well understood  

ISSM team-member: Daria Halkides. 

Drag 
coefficient 

ISSM – 2012 
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•  Once p, q & α are known, model is stepped 
forward in time to show how velocity & 
thickness change for given set of values… 

•  Initial case studies are in progress to: 
à  map possible p, q & α  combinations by 

region  

à  Understand associated physical conditions 

• Example: Jakobshavn Glacier, Greenland   
à  Velocity especially sensitive to thickness if 

friction effect is small 

à  Velocity most sensitive to friction      
dependence along southern glacier,                  
along mountain range (not shown) 
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6 Atmospheric forcing 
 

ISSM can be run transiently (through time) 
 

Transient experiments simulate how an ice sheet could respond to external 
(climate) forcings like: 
 

1/13/12 

ISSM team-member: Nicole Schlegel 

ISSM – 2012 

Atmosphere  
(temperature change,  
snowfall, melt, wind) 

Ocean  
(sea temperature change, sea level 
rise, tides, sea ice, ice shelf collapse) 

Example: Greenland melt extent 
 
 
 
 
 
 
 
 
 
(Steffen, 2003) 

Example: Antarctic ocean warming 
 
 
 
 
 
 
 
 
 
(NOAA AVHRR satellite data) 
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Configuring a modern ISSM Greenland model 
   

          MESH                           MODELED ICE SPEED 
 
 
 
 
 
 
 
 
 
 Over 70,000 grid elements       Calibrated to UCI data 

Simulation driven by historical climate conditions 

Assessing model sensitivities to uncertainties in 
climate input  

  

  CLIMATE UNCERTAINTY 
                                                   

Which errors have the most influence on  
the maximum ice speed in Greenland’s  

Northeast Ice Stream? 
 
 
 
 
 
 
 
 

Given errors, use 
ISSM sampling 
techniques to 
determine how the 
model responds in 
key highlighted 
basins 
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7 Solvers. 

The main computational bottleneck for ISSM simulations lies in the solver 
 

•  Simulations of realistic models, described by the full-Stokes equations, 
cannot be solved on continental scales without using a parallel solver.  

•  Parallel solvers facilitate improved accuracy and understanding: 

–  Greater accuracy and larger simulations:  

•  Detailed simulations and analysis employing higher refined mesh  

–  Improved uncertainty quantification:  

•  Parallel solver enables larger number of sampling runs per parameter 

•  Ongoing work: 

–  Develop scalable full-Stokes solvers that significantly improve computation times, 
giving access to better simulations such as Monte Carlo sampling of the same 
model several times to assess uncertainty, errors, sensitivity, etc… 
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ISSM team-member: Feras Habbal 
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8 Fracture of ice 
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ISSM team-member: Chris Borstad 

•  The collapse of the Larsen B ice shelf in 
2002 involved an area loss the size of 
Rhode Island 

•  No ice sheet model is currently capable of 
simulating this type of dynamic fracture 
event, or cracks of any type for that matter 

•  IPCC 2007 report highlighted this as a key 
deficiency in ice sheet models, especially 
for projecting future sea level rise 

•  The framework of continuum damage 
mechanics has been selected to simulate 
fractures in ISSM in a computationally 
efficient manner 

•  This type of model enhancement will allow 
for the simulation of rifts, crevasses and ice 
shelf calving fronts 
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This large rift in Pine Island Glacier will 
eventually release an iceberg over 300 

square miles in area  

In ISSM, this type of rift propagation 
will be modeled as a scalar damage 

field 
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Thanks! 

This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a 
contract with the National Aeronautics and Space Administration's Cryosphere Science Program. 


