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A brief history of ECCO — Estimating the Circulation and Climate of the Ocean

(the development of quantitative, property-conserving model-data syntheses needed for climate studies)
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Estimating the Circulation and Climate of the Ocean, Phase Ill (ECCO3):
Improved Representation of Ocean-Ice Interactions in Earth System Models

a) ECCO2 ice shelf cavity melt rate b) ISSM land ice surface velocity
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The ECCO3 project objectives are to study:

1. the origin and evolution of water masses near polar ice sheets from high-resolution state estimates,
numerical simulations, and adjoint sensitivity computations,

2. the scientific basis for decadal climate predictability , and

3. the reduction of uncertainties in sea level projections through improved modeling of ice sheets and of
ocean-ice interactions.

Achieving above objectives requires continued development of high-resolution, global-ocean, and sea-ice
state estimation, improved representation of critical ocean processes, improved representation of critical
ice sheet processes, and incorporation of ECCO2 and ISSM in GEOS-5.
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Modeling ice shelf-ocean interactions
Michael Schodlok
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Antarctic Bottom Water formation
Freshwater input from basal melt decreases High
2 Salinity Shelf Water production, which affects

Antarctic Bottom Water production and meridional
overturning.

Coupling with ISSM
05 Experimental coupling with JPL/UCI ISSM is underway
for improved estimates of ice shelf-ocean boundary
conditions.




Southern Ocean, sea ice, and ice-shelf cavity optimization

Théo Touvet, Michael Schodlok, and Hong Zhang
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A Green’s function approach is being
used to optimize model parameters in
an eddying Southern Ocean, sea ice,
and ice shelf cavity configuration of
the Massachusetts Institute of
Technology general circulation model
(MITgcm).

Figures to left display sensitivity of
model solution to freshwater input
around Antarctica. Too much
freshwater increase sea level around
Antarctica and slows down the Drake
Passage transport. Too little runoff
causes wintertime polynyas (not
shown).



Sensitivity of the ice shelf ocean system to the sub-ice shelf cavity shape measured
by NASA IceBridge in Pine Island Glacier, West Antarctica
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Cavity bathymetry of Pine Island derived from

BEDMAP (left) and from IceBridge data (right).
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Pine Island Bay IceBridge data reveal the
existence of a trough from the ice shelf
edge to the grounding line, enabling warm
Circumpolar Deep Water to penetrate to
the grounding line, hence leading to higher
melt rates.

The mean melt rate for the IceBridge
experiment is 28 m/a, much higher than
previous model estimates but closer to
estimates from satellite data.

Total melt rate is ~7 m/a higher for
IceBridge bathymetry than for BEDMAP
but temporal evolution remains
unchanged, indicating that temporal
melting variability is mostly driven by
processes outside the cavity.

(Schodlok et al., submitted)



Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation
under Pine Island Ice Shelf, West Antarctica
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Heimbach and Losch have
developed an adjoint model for the
MITgcm ice shelf cavity model.

As a first demonstration of this
new capability, they investigated
the sensitivity of sub-ice shelf melt
rates to changes in the oceanic
state.

The inferred sensitivities reveal a
dominant time scale of roughly 60
days over which the shelf exit is
connected to the deep interior.

To the extent that these transient
patterns are robust they carry
important information for
decision-making in observation
deployment and monitoring.

(Heimbach and Losch, submitted)
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Kangiata Nunata Sermia (KNS) Glacier (Southwest Greenland), September 2, 2010.
(animation courtesy of S. O’Neel, T. Pfeffer, J. Balog, A. Lewinter, and R. Motyka)




Glacier acceleration caused by spreading of warm ocean waters around Greenland
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300-m temperature from
an Arctic ice-ocean
simulation with optimized
model parameters and
melt rates sensitivities
from previous slide
suggests massive increases
in subaqueous melting,
exceeding 19 km per
summer in some sectors,
which must have been
sufficient to destabilize the
glacier fronts, unground
them from their shoaling
position, and trigger flow
acceleration.

(Rignot et al., submitted)



Observed SST, ECCO2 300-m temperature, and GRACE ice mass loss in Greenland
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(Velicogna et al., submitted)
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MITgcm sea ice model adjoint, suitable for coupled ocean/sea ice state estimation.
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Warm water

Numerical experiments on subaqueous melting of Greenland tidewater glaciers
in response to ocean warming and enhanced subglacial runoff
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Simulated subagueous melting is strongly dependent
on subglacial runoff: it ceases when subglacial runoff
is zero and increases sub-linearly with the flux of
subglacial runoff.

q(m/d)

Subaqueous melting increases quadratically with
ocean thermal forcing when subglacial runoff is low
but only linearly when subglacial runoff is high.

For high runoff rates, simulated melt rates are in the
range of several meters per day, consistent with
limited field data.
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Concluding remarks

The interaction between ocean and ice sheets on rather small scales, that is, in sub-ice
shelf cavities around Antarctica and in narrow fjords around Greenland, may provide a

key link between observed accelerated glacier flow and large scale oceanic variability
and circulation changes.

Around Antarctica, a more accurate representation of ice shelf-ocean interactions is
proving to be a key boundary condition both for ocean and for ice sheet simulations.

At least for the Pine Island Glacier, there is evidence that coupled ocean-ice sheet
modeling is needed to accurately represent time evolution during past ten years.

The Greenland problem appears more intractable than Antarctica at this time ...



