ISSM Workshop 2012

Ice Sheet System Model
ISSM Capabilities

Chris BORSTAD1, Bao DUONG5,1, Feras HABBAL2,1, Daria HALKIDES1,3, Michiel HELSEN2, Eric LAROUR1, Mathieu MORLIGHEM2, Lan NGUYEN5,1, Gilberto PÉREZ4,1, Eric RIGNOT2,1, John SCHIERMEIER1, Nicole SCHLEGEL1, Hélène SEROUSSI1

1Jet Propulsion Laboratory - California Institute of Technology
2University of California, Irvine
3Joint Institute for Regional Earth System Science & Engineering, UCLA
4University of Southern California
5Cal Poly Pomona
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding
Line Migration
Hydrology
Ice/Atmosphere
Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

Outline

1 Introduction

2 Capabilities

3 What ISSM cannot do

4 Conclusions
Introduction

History of ISSM

1960s

FEM

NASTRAN

2001

SSA
Rifting
Drag inv.
Rigidity inv.

HO

Cielo

Cielo ice (2005)

D. MacAyeal

Eric Larour
Marjorie Schmeltz

2008

HO
FS
Thermal
Transient
Mesh adaptation

2009

Dakota
Model coupling
Balance thickness

2011

Model coupling
Balance thickness
Grounding line mig.

ISSM

Ice

Helene Seroussi
Mathieu Morlighem

NASA

Jet Prop. Lab.

Ecole Centrale Paris

Univ. Calif. Irvine

Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding
Line Migration
Hydrology
Ice/Atmosphere
Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Diagnostic Models

Introduction

Capabilities

Diagnostic Models

Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding
Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

Diagnostic models of ice flow

Solve mechanical stress-equilibrium for the entire ice sheet/ice shelf. Can be done in 2D (SSA) or 3D (SIA, Higher-order, Full-Stokes). Material is isotropic nonlinear (Glen’s law) in the creep regime of deformation.

\[\nabla \cdot \vec{V} = 0 \]

\[\rho \frac{d\vec{V}}{dt} = \nabla \cdot \sigma + \rho \vec{g} \]

\[\sigma_{ij} = 2\eta \varepsilon_{ij} \]

\[\eta = \frac{1}{2} A(\theta)^{-1} \left(\varepsilon + \varepsilon_0 \right)^{(1-n)} \]

2d-3d square ice shelf flow (m/a)
Inversion

Rely on surface velocities (InSAR) to infer unknown parameters in the ice flow equations, such as viscosity, ice rigidity or basal drag.

\[J' = \iint_{s} \frac{1}{2} \left\{ (u - u_{obs})^2 + (v - v_{obs})^2 \right\} dx dy + \]

\[\iint_{s} \lambda(x,y) \left(\frac{\partial}{\partial x} \left(2vH \left(2 \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(vH \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right) - \rho g H \frac{\partial z_s}{\partial x} - \beta^2 u \right) \right\} dx dy + \]

\[\iint_{s} \mu(x,y) \left(\frac{\partial}{\partial y} \left(2vH \left(2 \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \right) \right) + \frac{\partial}{\partial x} \left(vH \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right) - \rho g H \frac{\partial z_s}{\partial y} - \beta^2 v \right) \right\} dx dy \]

\[\frac{dJ'}{d\beta} = -2 \iint_{s} \{ \lambda u + \mu v \} \beta \delta \beta \, dx dy \]
Inversion

2D SSA

3D BP

3D FS

Observed

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Diverse software developments.
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding
Line Migration
Hydrology
Ice/Atmosphere
Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

Parallel computing

• ISSM can run on any platform (multi-core desktop), shared or distributed cluster

• C++ implementation of computational core using MPICH and PETSc libraries + array of parallel libraries for partitioning, iterative and direct solvers

• Multi-threading of pre and post-processing modules to increase speed significantly
Parallel libraries

ISSM relies on a series of libraries to implement parallelism:

- **PETSc** Portable, Extensible Toolkit for Scientific Computation [Balay et al., 1997, Balay et al., 2008, Balay et al., 2009]. PETSc is a suite of data structures and routines for the scalable solution of scientific applications modeled by partial differential equations. Used mainly for its parallel structures (Vec and Mat objects) and iterative parallel solvers.

- **MPICH1,2**: Message Passing Interface [Gropp et al., 1996, Gropp and Lusk, 1996] to manage parallel communications between all cpus during solution sequences.

- **METIS**: Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices [Karypis and Kumar, 1998]. This package is used to partition objects such as elements and vertices across a cluster. This partitioning scheme results in partitions that have equal numbers of elements on each cluster node.

- **MUMPS**: Multifrontal Massively Parallel Sparse direct solver [Amestoy et al., 2001, Amestoy et al., 2006]. Direct solver that suffers few convergence issues. Relied upon often for the solution of any system of equations.
Rifting/Faulting

ISSM can account for the presence of rifts and faults in an ice shelf by carrying out a steady-state computation of the contact within the rifts/faults.
Rifting/Faulting

- Rifting and faulting account for contact stresses and the presence of melange
- This is not an initiation or propagation capability
- Relies on penalty methods to enforce contact conditions between flanks of rifts
- Relies on diagnostic model to compute stresses across ice shelf
 - This is not an LEFM capability. It assumes the entire ice shelf is creeping, and there is no inclusion of elastic stresses
Damage Mechanics

ISSM can also introduce a damage variable into Glen’s law, to account and invert for the presence of damage through the thickness of an ice shelf. For more details, we refer to Borstad et al, 2012.
Higher-order and Full-Stokes modeling

- ISSM relies on the the 2D SSA to capture longitudinal stresses, 3D Blatter/Pattyn to capture vertical shear stresses and full-Stokes equations to capture all stresses within the ice sheet.
- Activation of all three formulations is seamless, relying on almost the same model setup → experimentation is easy.
- Coupled with parallel computing and anisotropic meshing, higher-order modeling at the continental scale is achievable with reasonable resolutions.

Figure 8. Modeled surface velocity (m/yr) (using inverted basal drag coefficient) for the 2D Shelly Stream model (a), the 3D Blatter/Pattyn model (b) and the 3D full-Stokes model (c). d) Observed InSAR surface velocities (m/yr) of the Greenland Ice Sheet.
Anisotropic adaptation

- Adapt mesh according to a metric, such as surface velocity
- Static capability, not transient adaptation
- Relies on a rewrite of the BAMG anisotropic mesher [Hecht, 2006]
Prognostic modeling

- Mass transport equations:

\[
\frac{\partial H}{\partial t} + \nabla \cdot H \nabla = \dot{M}_s - \dot{M}_b
\]

- Update of surface and bed is hydrostatic on ice shelves. For ice sheets, surface is updated assuming the bedrock is fixed.
- Mass transport equations are coupled with diagnostic and thermal models to allow for complete transient models to be run (SeaRISE 2011).
- Boundary conditions assume fixed thickness at the ice divide, and free flux of mass at the calving front or the grounded margins.
- Calving front dynamics not included yet.
- Grounding line dynamics is hydrostatically treated.
Thermal modeling

\[
\frac{\partial T}{\partial t} = (\mathbf{w} - \mathbf{v}) \cdot \nabla T + \frac{k_{th}}{\rho c} \Delta T + \frac{\Phi}{\rho c}
\]

- Boundary conditions:
 - \(T = T_s \) at surface
 - At ice/bed interface:

\[
k_{th} \nabla T \cdot \mathbf{n} = G - \tau_b \cdot \mathbf{v}_b
\]

- [Holland and Jenkins, 1999] at the ice/ocean interface:

\[
k_{th} \nabla T \cdot \mathbf{n} = -\rho_w c_p M \gamma (T - T_f)
\]
Melting at the ice/bed interface

- Two models for computing melting rates:
 - Linear model where computation of temperatures is updated once for each temperature that goes above pressure melting point
 - Non-linear model where fixed-point scheme is used, where temperatures are updated until all of temperature field is below or at pressure melting point

Melting rate is recovered using:

\[
S = \frac{\lambda}{\rho_{\text{ice}} L} \left(\frac{dT^*}{dz} - \frac{dT}{dz} \right)
\]

where \(T^*\) is the temperature without pressure melting point constraints and \(T\) is the temperature after application of constraints. Non-linear model results in much lower melting rates, even though locations for melting are similar. It is critical to take into account non-linearity of thermal model, at least in steady-state!
Thermal modeling

New thermal model, based on [Aschwanden et al., 2012]. Enthalpy formulation, allows to recover more physically consistent melting rates. Avoids relying on penalty formulations to constrain temperature to pressure melting point. System of equations is better conditioned — more favourable for iterative solvers.
Sensitivity analysis

- Sampling and local reliability methods to study the impact of different areas of the mesh
- Sampling of the mesh using Chaco, Scotch and Metis partitioners
- Partition the mesh into equal area subsections, which then can be updated for each sample of a Monte-Carlo or local reliability simulation
Sensitivity analysis

- Results can then be plotted in histograms for sampling analysis or importance factors for local reliability methods.
Assimilation of ice thickness (balanced thickness)

- Ice thickness can be optimized to ensure smooth divergence of the flux (thinning rate) [Morlighem et al., 2011]
3D Hydrostatic grounding line migration

- At each time step of the transient ice flow solution, we check the following for every vertex of the mesh:

 \[b \leq b_a \]

 where \(b_a \) is the depth of the glacier bed or seafloor. For most ice sheet/ice shelf configurations, \(b \) is negative. If this condition is verified for a floating vertex (i.e., on an ice shelf), we ground the vertex and force \(b = b_a \)

 \[b > b_{HE} \]

 where \(b_{HE} \) is the depth of the bottom of the ice in hydrostatic equilibrium: \(b_{HE} = \frac{H \rho}{\rho_w} \). If this condition is verified for a grounded vertex (i.e., on the ice sheet), we unground the vertex and force \(b = b_{HE} \)
Capabilties

Introduction
Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

Time: 30.1 yr

Distance from 96 grounding line (km)

Distance from 96 grounding line (km)

0 50

0

-100

-1000

-500

0

500

1000

1500

2000

2500

3000

-100

-50

0

50
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction
Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

![Graph showing 3D Hydrostatic grounding line migration](image)
3D Hydrostatic grounding line migration

- **Capabilities**
 - Diagnostic Models
 - Inversion
 - Parallel Computing
 - Rifting/Faulting
 - Higher-order, Full-Stokes
 - Anisotropic Adaptation
 - Prognostic Models
 - Thermal Analysis
 - Sensitivity Analysis
 - Ice Thickness Assimilation
 - 3D Hydrostatic Grounding Line Migration
 - Hydrology
 - Ice/Atmosphere Interaction
 - Diverse software developments.

- **What ISSM cannot do**
 - Ice flow models
 - Basal conditions
 - Inversion and data assimilation
 - Ice/atmosphere interactions
 - Ice/ocean interactions
 - Other capabilities
 - Numerics

Conclusions
3D Hydrostatic grounding line migration

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
3D Hydrostatic grounding line migration

- Ice
- Water
- Bedrock

Time: 200 yr

Elevation (m)

Distance from 96 grounding line (km)

V(m/yr)

V_{obs} in 1996 (m/yr)

Grounding line position in 1996

What ISSM cannot do:
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Diverse software developments.
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

JPL / UC IRVINE

ISSM WORKSHOP 2012
3D Hydrostatic grounding line migration

Time: 313 yr

What ISSM cannot do

Ice flow models
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

- Time: 341 yr
- Elevation (m)
- Distance from 96 grounding line (km)
- \(V(m/yr) \)
- \(V_{obs} \) in 1996 (m/yr)
- Grounding line position in 1995
3D Hydrostatic grounding line migration

Elevation (m)

Time: 369 yr

Distance from 96 grounding line (km)

V (m/yr)

V_{obs} in 1996 (m/yr)

Grounding line position in 1996
Capabilities

Introduction

Capabilities

- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

What ISSM cannot do

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions

Other capabilities

- Numerics

Conclusions
3D Hydrostatic grounding line migration

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation
- 3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

Conclusions
3D Hydrostatic grounding line migration
Capabilities

Introduction
Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

The island glacier grounding line migration and ice flood acceleration after 1996.

Time: 510 yr

Elevation (m)

Ice
Water
Bedrock

Distance from 96 grounding line (km)

V(m/yr)

V observed in 1996 (m/yr)

Grounding line position in 1996

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

The island collision grounding line migration and ice flow acceleration after 1996.
3D Hydrostatic grounding line migration

Time: 567 yr

Elevation (m)

Distance from 96 grounding line (km)

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics
3D Hydrostatic grounding line migration

The Island Glacier, grounding line migration and ice flow acceleration after 1996.
3D Hydrostatic grounding line migration

The Island Glacier: grounding line migration and ice flow acceleration after 1996

Time: 623 yr

Elevation (m)

-1000

-10

0

500

Ice

Water

Ice/sediment

Distance from 1996 grounding line (km)

V (m/yr)

1000

2000

3000

0

10

20

30

Grounding line position in 1996

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Diverse software developments.

Numerics

Conclusions

ISSM WORKSHOP 2012

JPL/UC IRVINE

ISSM WORKSHOP 2012

JPL/UC IRVINE
3D Hydrostatic grounding line migration

The Island Glacier grounding line migration and ice flow acceleration after 1996

- Time: 652 yr
- Elevation (m)
 - Ice
 - Water
 - Bedrock

- Distance from 96 grounding line (km)
 - $V(m/yr)$
 - V_{obs} in 1996 (m/yr)
 - Grounding line position in 1996

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics
3D Hydrostatic grounding line migration

The Island Glacier: grounding line migration and ice flow acceleration after 1996
Capabilities

Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions

3D Hydrostatic grounding line migration

Fine Island Glacier: grounding line migration and ice flow acceleration after 1996

- Elevation (m)
- Time: 708 yr
- Ice, Water, Bedrock

V(m/yr)
- Obs in 1996 (m/yr)
- Grounding line position in 1996

Distance from 96 grounding line (km)
- 50 km
- 0 km
- 0 yr

ISSM WORKSHOP 2012

JPL / UC IRVINE
3D Hydrostatic grounding line migration

ISSM WORKSHOP 2012

Introduction
Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities

- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Diagnostic Models

- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Prognostic Models

- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Higher-order, Full-Stokes

- Anisotropic Adaptation

Anisotropic Adaptation

- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Parallel Computing

- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation

Rifting/Faulting

- Higher-order, Full-Stokes
- Anisotropic Adaptation

Anisotropic Adaptation

- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Prognostic Models

- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

What ISSM cannot do

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Numerics

- Conclusions

Conclusion

- ISSM Workshop 2012
- JPL / UC Irvine

3D Hydrostatic Grounding Line Migration

- Fine Island Glacier: grounding line migration and ice flow acceleration after 1996

- Elevation (m)
 - Ice
 - Water
 - Bedrock

- Time: 765 yr

- Distance from 96 grounding line (km)
 - V(m/yr)
 - obs in 1996 (m/yr)
 - Grounding line position in 1996
3D Hydrostatic grounding line migration

- **Ice flow models**
- **Basal conditions**
- **Inversion and data assimilation**
- **Ice/atmosphere interactions**
- **Ice/ocean interactions**
- **Other capabilities**
- **Numerics**

Capacities

Introduction

Capabilities

- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Diagnostic Models

- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation

Prognostic Models

- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Diverse software developments.

What ISSM cannot do

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

Time: 849 yr

Elevation (m)

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/ocean interactions
Other capabilities
Numerics

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

Elevation (m)

Time: 878 yr

Ice
Water
Bedrock

V(m/yr)

V_{obs} in 1996 (m/yr)
Grounding line position in 1996

Distance from 96 grounding line (km)
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

-1000
-100
 0 50

Elevation (m)

Time: 906 yr

Ice
Water
Bedrock

V(m/yr)

\(V_{\text{obs}} \) in 1996 (m/yr)
Grounding line position in 1996

Distance from 96 grounding line (km)
3D Hydrostatic grounding line migration
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

- Ice
- Water
- Ice/Bedrock

Time: 962 yr

Elevation (m)

3D Hydrostatic grounding line migration

Distance from 96 grounding line (km)

V(m/yr)

V \text{obs} in 1996 (m/yr)

Grounding line position in 1996
Capabilities

Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions

3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

<table>
<thead>
<tr>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1000</td>
</tr>
<tr>
<td>-500</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Time: 991 yr

V(m/yr)

V_{obs} in 1996 (m/yr)

Grounding line position in 1996

Distance from 96 grounding line (km)

-100
-50
0
50

-1000
-500
0
1000
2000
3000

0
1000
2000
3000

ice
water
bedrock
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities

Numerics

Conclusions
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

Elevation (m)

0
-500
-1000
-100
-50
0
50

Time: 1.05e+03 yr

Ice
Water
Bedrock

Distance from 96 grounding line (km)

0
-50
100
2000
3000
1000
0

V(m/yr)

V_{obs} in 1996 (m/yr)
Grounding line position in 1996

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

Time: 1.08e+03 yr

Elevation (m)
-1000
-100
-500
0

Ice
Water
Bedrock

V(m/yr)
0
1000
2000
3000

V_{obs} in 1996 (m/yr)
Grounding line position in 1996

Distance from 96 grounding line (km)
-100
-50
0
50
3D Hydrostatic grounding line migration

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

Time: 1.1e+03 yr

Elevation (m)

0
-500
-1000
-100
-50
0
50

Distance from 1996 grounding line (km)

0
-100
-50
0
50

V(m/yr)

0
1000
2000
3000

V_{obs} in 1996 (m/yr)

Grounding line position in 1996

Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics
Capabilities

Introduction
Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

Time: 1996.8 yr

2009 Grounding Line

1996 Grounding Line

x 10^5

-2.55
-2.6
-2.65
-2.7
-2.75
-2.8
-2.85
-2.9
-2.95
-3

-1.62
-1.61
-1.6
-1.59
-1.58
-1.57

x 10^6
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

- **Diagnostic Models**
 - Inversion
 - Parallel Computing
 - Rifting/Faulting
 - Higher-order, Full-Stokes
 - Anisotropic Adaptation
- **Prognostic Models**
 - Thermal Analysis
 - Sensitivity Analysis
 - Ice Thickness Assimilation
 - 3D Hydrostatic Grounding
 - Line Migration
 - Hydrology
 - Ice/Atmosphere
 - Interaction
 - Diverse software developments.

What ISSM cannot do

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Capabilities

- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

What ISSM cannot do:

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

Time: 1999.8 yr
Capabilities

Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

Capabilities

- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation
- 3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do

- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
3D Hydrostatic grounding line migration

Time: 2005.4 yr

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions

3D Hydrostatic grounding line migration

Time: 2005.8 yr

2009 Grounding Line

1996 Grounding Line

x 10^5

-2.55
-2.6
-2.65
-2.7
-2.75
-2.8
-2.85
-2.9
-2.95
-3

-1.62
-1.61
-1.6
-1.59
-1.58
-1.57

x 10^6
3D Hydrostatic grounding line migration
3D Hydrostatic grounding line migration

Time: 2006.5 yr

-1.62, -1.61, -1.6, -1.59, -1.58, -1.57

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation

Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities

Numerics

Conclusions
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
Capabilities

Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation
- 3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions

3D Hydrostatic grounding line migration

![Graph showing 3D Hydrostatic grounding line migration with time: 2008.1 yr]
3D Hydrostatic grounding line migration

Time: 2008.4 yr

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics
Capabilities

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration
3D Hydrostatic grounding line migration

Introduction

Capabilities
Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation

3D Hydrostatic Grounding Line Migration

Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

What ISSM cannot do
Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Conclusions
3D Hydrostatic grounding line migration

Time: 2009.9 yr

1996 Grounding Line

2009 Grounding Line
3D Hydrostatic grounding line migration
Introduction

Capabilities
- Diagnostic Models
- Inversion
- Parallel Computing
- Rifting/Faulting
- Higher-order, Full-Stokes
- Anisotropic Adaptation
- Prognostic Models
- Thermal Analysis
- Sensitivity Analysis
- Ice Thickness Assimilation
- 3D Hydrostatic Grounding Line Migration
- Hydrology
- Ice/Atmosphere Interaction
- Diverse software developments.

What ISSM cannot do
- Ice flow models
- Basal conditions
- Inversion and data assimilation
- Ice/atmosphere interactions
- Ice/ocean interactions
- Other capabilities
- Numerics

Conclusions
Hydrology model

[Le Brocq et al., 2009]: the evolution of the water-film thickness (w) is given by:

$$ \frac{dw}{dt} = S - \nabla \cdot (w \bar{u}_w) $$

With w the water thickness, S the basal melting rate and \bar{u}_w the depth-averaged water velocity vector.

Assuming a laminar flow between two parallel plates:

$$ \bar{u}_w = \frac{w^2 \nabla \Phi}{12 \mu} $$

and

$$ \Phi = \rho_i g z_s + (\rho_w - \rho_i) g z_b - N $$

where μ is the water viscosity, z_s and z_b the surface and bed elevations, N the effective pressure and Φ the pressure potential.
Hydrology model

Because we assume a non-arborescent drainage system, we cancel the effective pressure N:

$$\nabla \Phi = \rho_i g \nabla z_s + (\rho_w - \rho_i) g \nabla z_b$$

This set of assumptions results in the following non-linear system:

$$\frac{dw}{dt} = S - \nabla \left(\frac{w^3}{12 \mu} \nabla \Phi \right)$$
ISSM now capable of transient forcing at the surface, using SMB time series (Schelegel et al., 2012, in revision).

In addition, new PDD model contributed by Kevin Le Morzadec.
• Python now supported as a new scientific toolkit.
• Windows XP64/Vista 64 supported in serial mode. Working towards parallel port. Packaging supported.
• Android support to run ISSM native.
Ice models

- Ice anisotropy not included (ice fabrics)
- Ice considered isotropic
- Cold ice model used in thermal model
- Moving grounding line based on hydrostatic equilibrium
- Not implemented for full-Stokes (based on contact mechanics)
- Ice front and margins fixed in time, no calving law
- Calving rate equal to ice velocity
Capabilities

Basal conditions

- Basal friction fixed in time
- Hydrology not coupled to basal friction
- Sub-glacial hydrology only

No englacial hydrology

What ISSM cannot do

Ice flow models
Basal conditions
Inversion and data assimilation
Ice/atmosphere interactions
Ice/ocean interactions
Other capabilities
Numerics

Introductions

Diagnostic Models
Inversion
Parallel Computing
Rifting/Faulting
Higher-order, Full-Stokes
Anisotropic Adaptation
Prognostic Models
Thermal Analysis
Sensitivity Analysis
Ice Thickness Assimilation
3D Hydrostatic Grounding
Line Migration
Hydrology
Ice/Atmosphere Interaction
Diverse software developments.

Conclusions

ISSM WORKSHOP 2012
JPL / UC IRVINE
Inversions and data assimilation

Inversions limited to:

- Ice rheology
- Basal friction
- Ice thickness consistency with velocities

Assimilation for a given time
Ice/atmosphere interactions

Two way coupling to Atmosphere not implemented.

No surface model for atmospheric coupling. This will probably remain on the Atmospheric side.
Ice/ocean interactions

Interaction between ice and ocean not included

- Melting rates under ice shelved prescribed
- Sea level fixed at \(z = 0 \)

→ ECCO3 project to couple ocean and ice models

Mean Melt Rate \(dh/dt \) [m/a]

- **Freezing** \(dh/dt > 0 \)
- **Melting** \(dh/dt < 0 \)

1979 - 2007

Schodlok et al., submitted
Other capabilities

- Post-glacial rebound: efforts to couple with PGR Model from Ivins et al, 1993.
- Rift propagation. Ongoing dvpt to include transient damage propagation.
Numerics

- Only triangle (2D) and prismatic (3D) elements
 → No quadrangle elements
- Only P1 (piecewise linear nodal functions)
 → No quadratic or higher-order interpolations
- Direct solver used for full-Stokes model
 → No scalable solver (iterative solver). Ongoing work by Feras Habbal for scalable solvers using PETSc.
Conclusions

- ISSM represents a wide array of capabilities, geared toward solving specific cryosphere challenges such as projections of future sea level rise
- Extensive software and architecture support, as well as wide array of numerical solutions and physics implemented
- Challenges remain, such as grounding line dynamics using FS, moving margins and ice/ocean interactions
Bibliography I

Bibliography II

Bibliography III

User’s Guide for mpich, a Portable Implementation of MPI.
Mathematics and Computer Science Division, Argonne National Laboratory.
ANL-96/6.

BAMG: Bi-dimensional anisotropic mesh generator.

Modeling thermodynamic ice-ocean interactions at the base of an ice shelf.

A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.
University of Minnesota.
Bibliography IV

Thanks!