Ice Sheet System Model
Application of Operation Ice Bridge Data

Nicole SCHLEGEL¹,

¹California Institute of Technology - JPL, Pasadena, CA
Overview

1. Introduction

2. Mesh

3. Parameterization

4. Control Method Solution

5. Transient Solution

6. Plot Results
Goals

Use your new ISSM skills to adjust a coarse Greenland model by adding IceBridge data. We refine the mesh in the Jakobshavn basin and add higher resolution bedrock and surface elevation data from IceBridge in this area.

Steps:

• Refine Greenland mesh using given Jakobshavn outline
• Parameterize, include the high-resolution IceBridge bedrock and surface data
• Plot ice base and surface data
• Stress Balance: run 2 inverse method runs to solve for control drag (20 steps recommended)
• Transient: run 20 year runs, with coarse and refined bedrock and surface elevation data
• Plot transient results
First Run Step: Mesh

We modify the experiment from the Greenland SeaRISE talk, and improve from there.

First, run the first step in runme.m in directory 10IceBridge to mesh the Greenland domain as done in the previous talk.

Step 1 is interrupted after making the default mesh. Plot the result.

It should look like this:
We want to refine the mesh in the Jakobshavn area. An outline of this area *Jak_outline.exp* can be found in directory *Exp_Par*.

Try using `exptool` to view this outline:

```matlab
1   >> exptool('Exp_Par/Jak_outline.exp');
```
Next, we modify the bamg command by imposing a 3 km resolution within the Jakobshavn area: using `hmaxVertices`.

Note that you need to deactivate the previous `bamg` command.

```matlab
%Refine mesh in the region of Jakobshavn (resolution = 3000 m)
hmaxVertices=NaN*ones(md.mesh.numberofvertices,1);
in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,...
'./Exp_Par/Jak_outline.exp','node',1);
md=bamg(md,'hmax',400000,'hmin',5000,'gradation',1.7,'field',vel,...
'err',8,'hmaxVertices',hmaxVertices);
```

Check your results using `plotmodel`.
Try zoom to make a close-up of the Jakobshavn domain.
%Mesh greenland without refinement in Jak basin
md=bamg(md,'hmax',400000,'hmin',5000,'gradation',1.7,'field',vel,'err',8);
return;

%Refine mesh in the region of Jakobshavn (resolution = 3000 m)
hmaxVertices=NaN*ones(md.mesh.numberofvertices,1);
in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,...
 './Exp_Par/Jak_outline.exp','node',1);
hmaxVertices(find(in))=3000;
md=bamg(md,'hmax',400000,'hmin',5000,'gradation',1.7,'field',vel,...
 'err',8,'hmaxVertices',hmaxVertices);

%convert x,y coordinates (Polar stereo) to lat/lon
[md.mesh.lat,md.mesh.long]=xy2ll(md.mesh.x,md.mesh.y,+1,39,71);

save './Models/Greenland.Mesh_generation' md;
Parameterization

We want to include high-resolution bedrock and surface elevation data acquired in the IceBridge mission. Accessible on:

https://data.cresis.ku.edu/data/grids/
Jakobshavn_2008_2011_Composite_XYZGrid.txt
Parameterization, 2/6

Bedrock data is read, transformed into a usable grid, and interpolated to the mesh in the parameter file `Exp_Par/Greenland.par`:

```matlab
%Reading IceBridge data for Jakobshavn
disp(' reading IceBridge Jakobshavn bedrock');
 fid = fopen('Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt');
titles = fgets(fid); data = fscanf(fid,'%g,%g,%g,%g,%g',[5 266400])';
fclose(fid);

[xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);
bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed==-9999))=NaN;
bedy = flipud(reshape(data(:,1),[360 740]));
bedx = flipud(reshape(data(:,2),[360 740]));

%Insert Icebridge bed and recalculate thickness
bed_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),bed,xi,yi,NaN);
in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,...
'.//Exp_Par/Jak_grounded.exp','node',1);
bed_jks(~in)=NaN;
pos=find(~isnan(bed_jks));
md.geometry.base(pos)=bed_jks(pos);
md.geometry.thickness=md.geometry.surface-md.geometry.base;
```

Modify `Greenland.par` such that the surface elevation data is also included for the Jakobshavn area.
Parameterization, 3/6

Solution

30 %Reading IceBridge data for Jakobshavn
31 disp(' reading IceBridge Jakobshavn bedrock');
32 fid = fopen('Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt');
33 titles = fgets(fid); data = fscanf(fid,'%g,%g,%g,%g,%g',[5 266400]);
34 fclose(fid);
35
36 [xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);
37 bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed==-9999))=NaN;
38 surf = flipud(reshape(data(:,4),[360 740])); surf(find(surf==-9999))=NaN;
39 bedy = flipud(reshape(data(:,1),[360 740]));
40 bedx = flipud(reshape(data(:,2),[360 740]));
41
42 %Insert Icebridge bed and recalculate thickness
43 bed_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),bed,xi,yi,NaN);
44 surf_jks=InterpFromGridToMesh(bedx(1,:)',bedy(:,1),surf,xi,yi,NaN);
45 in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,...
46 './Exp.Par/Jak_grounded.exp','node',1);
47 bed_jks(~in)=NaN;
48 surf_jks(~in)=NaN;
49 pos=find(~isnan(bed_jks));
50 md.geometry.base(pos)=bed_jks(pos);
51 md.geometry.surface(pos)=surf_jks(pos);
52 md.geometry.thickness=md.geometry.surface-md.geometry.base;

Plot surface elevation, thickness, and base.
Parameterization, 4/6

Solution

1 >> plotmodel(md,'data',md.geometry.surface);
2 >> plotmodel(md,'data',md.geometry.thickness);
3 >> plotmodel(md,'data',md.geometry.base);

They should look like:

![Plot Examples]
To plot the difference in ice base topography between the SeaRISE and IceBridge datasets:

Modify the parameterization step in your runme and save the model under a different name.

A difference in fields can be plotted using:

```
1   >> md2=loadmodel('Models/Greenland.Parameterization2');
2   >> md=loadmodel('Models/Greenland.Parameterization');
3   >> plotmodel(md,'data',md2.geometry.base-md.geometry.base);
```
Parameterization, 6/6

Solution

A difference in fields can be plotted using:

```
1    >> md2=loadmodel('Models/Greenland.Parameterization2');
2    >> md=loadmodel('Models/Greenland.Parameterization');
3    >> plotmodel(md,'data',md2.geometry.base-md.geometry.base);
```
Stress Balance

Use control methods to inversely solve for Greenland friction coefficient
Comparable to the 10SeaRISE_GrIS experiment

The observed velocity map contains some gaps; exclude these from the inversion by creating a new exp file that outlines the gaps in the velocity data, using `exptool`:

```matlab
>> exptool('Exp_Par/data_gaps.exp');
```
Stress Balance, 2/3

Next, run the model and plot the resulting friction coefficient and velocity pattern

```
>> plotmodel(md,'data',md.results.StressbalanceSolution.FrictionCoefficient);
>> plotmodel(md,'data',md.results.StressbalanceSolution.Vel,...
    'log',10,'caxis',[0.5 5000]);
```
Stress Balance, 3/3

```matlab
1  >> plotmodel(md,'data',md.results.StressbalanceSolution.FrictionCoefficient);
2  >> plotmodel(md,'data',md.results.StressbalanceSolution.Vel,...
3    'log',10,'caxis',[0.5 5000]);
```
Transient

Forcing

Do a transient run..
Transient Results

Plot Plan

Your results are located in `md.results.TransientSolution`. Plot your results.

First, plot the initial plan view of velocity, surface mass balance, thickness, and surface.

They should look like:

![Velocity](image1.png)

![Surface Mass Balance](image2.png)

![Thickness](image3.png)

![Surface](image4.png)
Transient Results

Plot time series

They should look like:

- Mean Surface mass balance
- Mean Velocity
- Ice Volume
Transient Results

Some suggestions what to explore further:

- How would you make a plot of time series of results from the SeaRISE and IceBridge experiments?
- How would you make a plot of the difference between final and initial ice thickness?
- ...

We can help you to implement your own ideas in the code.
Thanks!