Publications

2023

  1. Seroussi, H., Verjans, V., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., et al. (2023). Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. The Cryosphere, 17(12), 5197–5217. https://doi.org/10.5194/tc-17-5197-2023
  2. Verjans, V., Robel, A., Thompson, A. F., & Seroussi, H. (2023). Bias Correction and Statistical Modeling of Variable Oceanic Forcing of Greenland Outlet Glaciers. Journal of Advances in Modeling Earth Systems, 15(4). https://doi.org/10.1029/2023MS003610
  3. Smith, I. B., Schlegel, N. ‐J., Larour, E., Isola, I., Buhler, P. B., Putzig, N. E., & Greve, R. (2022). Carbon Dioxide Ice Glaciers at the South Pole of Mars. Journal of Geophysical Research: Planets, 127(4). https://doi.org/10.1029/2022JE007193
  4. Choi, Y., Seroussi, H., Gardner, A., & Schlegel, N. (2022). Uncovering Basal Friction in Northwest Greenland Using an Ice Flow Model and Observations of the Past Decade. Journal of Geophysical Research: Earth Surface, 127(10). https://doi.org/10.1029/2022JF006710
  5. Paolo, F. S., Gardner, A. S., Greene, C. A., Nilsson, J., Schodlok, M. P., Schlegel, N.-J., & Fricker, H. A. (2023). Widespread slowdown in thinning rates of West Antarctic ice shelves. The Cryosphere, 17(8), 3409–3433. https://doi.org/10.5194/tc-17-3409-2023
  6. Gardner, A. S., Schlegel, N.-J., & Larour, E. (2023). Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research. Geoscientific Model Development, 16(8), 2277–2302. https://doi.org/10.5194/gmd-16-2277-2023
  7. Sommers, A., Meyer, C., Morlighem, M., Rajaram, H., Poinar, K., Chu, W., & Mejia, J. (2023). Subglacial hydrology modeling predicts high winter water pressure and spatially variable transmissivity at Helheim Glacier, Greenland. Journal of Glaciology, 1–13. https://doi.org/10.1017/jog.2023.39
  8. Gudmundsson, G. H., Barnes, J. M., Goldberg, D. N., & Morlighem, M. (2023). Limited Impact of Thwaites Ice Shelf on Future Ice Loss From Antarctica. Geophysical Research Letters, 50(11). https://doi.org/10.1029/2023GL102880
  9. Das, I., Morlighem, M., Barnes, J., Gudmundsson, G. H., Goldberg, D., & Dias dos Santos, T. (2023). In the Quest of a Parametric Relation Between Ice Sheet Model Inferred Weertman’s Sliding‐Law Parameter and Airborne Radar‐Derived Basal Reflectivity Underneath Thwaites Glacier, Antarctica. Geophysical Research Letters, 50(10). https://doi.org/10.1029/2022GL098910
  10. Schwans, E., Parizek, B. R., Alley, R. B., Anandakrishnan, S., & Morlighem, M. M. (2023). Model insights into bed control on retreat of Thwaites Glacier, West Antarctica. Journal of Glaciology, 1–19. https://doi.org/10.1017/jog.2023.13
  11. Ehrenfeucht, S., Morlighem, M., Rignot, E., Dow, C. F., & Mouginot, J. (2022). Seasonal Acceleration of Petermann Glacier, Greenland, From Changes in Subglacial Hydrology. Geophysical Research Letters, 50(1). https://doi.org/10.1029/2022GL098009
  12. Butcher, F. E. G., Arnold, N. S., Conway, S. J., Berman, D. C., Davis, J. M., & Balme, M. R. (2023). The internal structure of a debris-covered glacier on Mars revealed by gully incision. Icarus, 115717. https://doi.org/10.1016/j.icarus.2023.115717
  13. Arnold, N. S., Butcher, F. E. G., Conway, S. J., Gallagher, C., & Balme, M. R. (2022). Surface topographic impact of subglacial water beneath the south polar ice cap of Mars. Nature Astronomy, 6(11), 1256–1262. https://doi.org/10.1038/s41550-022-01782-0
2022
  1. Fischler, Y., Rückamp, M., Bischof, C., Aizinger, V., Morlighem, M., & Humbert, A. (2022). A scalability study of the Ice-sheet and Sea-level System Model (ISSM, version 4.18). Geoscientific Model Development, 15(9), 3753–3771. https://doi.org/10.5194/gmd-15-3753-2022
  2. Åkesson, H., Morlighem, M., Nilsson, J., Stranne, C., & Jakobsson, M. (2022). Petermann ice shelf may not recover after a future breakup. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29529-5
  3. Cheng, G., Morlighem, M., Mouginot, J., & Cheng, D. (2022). Helheim Glacier’s Terminus Position Controls Its Seasonal and Inter‐Annual Ice Flow Variability. Geophysical Research Letters, 49(5). https://doi.org/10.1029/2021GL097085
  4. Cuzzone, J. K., Young, N. E., Morlighem, M., Briner, J. P., & Schlegel, N.-J. (2022). Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings. The Cryosphere, 16(6), 2355–2372. https://doi.org/10.5194/tc-16-2355-2022
  5. Downs, J., Brinkerhoff, D., & Morlighem, M. (2022). Inferring time-dependent calving dynamics at Helheim Glacier. Journal of Glaciology, 69(274), 381–396. https://doi.org/10.1017/jog.2022.68
  6. Baldacchino, F., Morlighem, M., Golledge, N. R., Horgan, H., & Malyarenko, A. (2022). Sensitivity of the Ross Ice Shelf to environmental and glaciological controls. https://doi.org/10.5194/tc-2022-50
  7. Khan, S. A., Choi, Y., Morlighem, M., Rignot, E., Helm, V., Humbert, A., et al. (2022). Extensive inland thinning and speed-up of Northeast Greenland Ice Stream. Nature, 611(7937), 727–732. https://doi.org/10.1038/s41586-022-05301-z
  8. McCormack, F. S., Warner, R. C., Seroussi, H., Dow, C. F., Roberts, J. L., & Treverrow, A. (2022). Modeling the Deformation Regime of Thwaites Glacier, West Antarctica, Using a Simple Flow Relation for Ice Anisotropy (ESTAR). Journal of Geophysical Research: Earth Surface, 127(3). https://doi.org/10.1029/2021JF006332
  9. Castleman, B. A., Schlegel, N.-J., Caron, L., Larour, E., & Khazendar, A. (2022). Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier. The Cryosphere, 16(3), 761–778. https://doi.org/10.5194/tc-16-761-2022
  10. Dias dos Santos, T., Morlighem, M., & Brinkerhoff, D. (2022). A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model. The Cryosphere, 16(1), 179–195. https://doi.org/10.5194/tc-16-179-2022
  11. Frank, T., Åkesson, H., de Fleurian, B., Morlighem, M., & Nisancioglu, K. H. (2022). Geometric controls of tidewater glacier dynamics. The Cryosphere, 16(2), 581–601. https://doi.org/10.5194/tc-16-581-2022
  12. Felikson, D., Nowicki, S., Nias, I., Morlighem, M., & Seroussi, H. (2022). Seasonal Tidewater Glacier Terminus Oscillations Bias Multi‐Decadal Projections of Ice Mass Change. Journal of Geophysical Research: Earth Surface, 127(2). https://doi.org/10.1029/2021JF006249
  13. Robel, A. A., Wilson, E., & Seroussi, H. (2022). Layered seawater intrusion and melt under grounded ice. The Cryosphere, 16(2), 451–469. https://doi.org/10.5194/tc-16-451-2022
  14. Bulthuis, K., & Larour, E. (2022). Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19. Geoscientific Model Development, 15(3), 1195–1217. https://doi.org/10.5194/gmd-15-1195-2022
  15. de Fleurian, B., Davy, R., & Langebroek, P. M. (2022). Impact of runoff temporal distribution on ice dynamics. The Cryosphere, 16(6), 2265–2283. https://doi.org/10.5194/tc-16-2265-2022
  16. Greene, C. A., Gardner, A. S., Schlegel, N.-J., & Fraser, A. D. (2022). Antarctic calving loss rivals ice-shelf thinning. Nature, 609(7929), 948–953. https://doi.org/10.1038/s41586-022-05037-w
  17. Dawson, E. J., Schroeder, D. M., Chu, W., Mantelli, E., & Seroussi, H. (2022). Ice mass loss sensitivity to the Antarctic ice sheet basal thermal state. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32632-2
2021
  1. Adhikari, S., Milne, G. A., Caron, L., Khan, S. A., Kjeldsen, K. K., Nilsson, J., et al. (2021). Decadal to Centennial Timescale Mantle Viscosity Inferred From Modern Crustal Uplift Rates in Greenland. Geophysical Research Letters, 48(19). https://doi.org/10.1029/2021GL094040
  2. Frederikse, T., Adhikari, S., Daley, T. J., Dangendorf, S., Gehrels, R., Landerer, F., et al. (2021). Constraining 20th‐Century Sea‐Level Rise in the South Atlantic Ocean. Journal of Geophysical Research: Oceans, 126(3). https://doi.org/10.1029/2020JC016970
  3. Payne, A. J., Nowicki, S., Abe‐Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., et al. (2021). Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 48(16). https://doi.org/10.1029/2020GL091741
  4. Felikson, D., A. Catania, G., Bartholomaus, T. C., Morlighem, M., & Noël, B. P. Y. (2021). Steep Glacier Bed Knickpoints Mitigate Inland Thinning in Greenland. Geophysical Research Letters, 48(2). https://doi.org/10.1029/2020GL090112
  5. Choi, Y., Morlighem, M., Rignot, E., & Wood, M. (2021). Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-021-00092-z
  6. Barnes, J. M., Dias dos Santos, T., Goldberg, D., Gudmundsson, G. H., Morlighem, M., & De Rydt, J. (2021). The transferability of adjoint inversion products between different ice flow models. The Cryosphere, 15(4), 1975–2000. https://doi.org/10.5194/tc-15-1975-2021
  7. McCormack, F. S., Roberts, J. L., Gwyther, D. E., Morlighem, M., Pelle, T., & Galton‐Fenzi, B. K. (2021). The Impact of Variable Ocean Temperatures on Totten Glacier Stability and Discharge. Geophysical Research Letters, 48(10). https://doi.org/10.1029/2020GL091790
  8. Åkesson, H., Morlighem, M., O’Regan, M., & Jakobsson, M. (2021). Future Projections of Petermann Glacier Under Ocean Warming Depend Strongly on Friction Law. Journal of Geophysical Research: Earth Surface, 126(6). https://doi.org/10.1029/2020JF005921
  9. Pelle, T., Morlighem, M., Nakayama, Y., & Seroussi, H. (2021). Widespread Grounding Line Retreat of Totten Glacier, East Antarctica, Over the 21st Century. Geophysical Research Letters, 48(17). https://doi.org/10.1029/2021GL093213
  10. dos Santos, T. D., Barnes, J. M., Goldberg, D. N., Gudmundsson, G. H., & Morlighem, M. (2021). Drivers of Change of Thwaites Glacier, West Antarctica, Between 1995 and 2015. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021GL093102
  11. Morlighem, M., Goldberg, D., Dias dos Santos, T., Lee, J., & Sagebaum, M. (2021). Mapping the Sensitivity of the Amundsen Sea Embayment to Changes in External Forcings Using Automatic Differentiation. Geophysical Research Letters, 48(23). https://doi.org/10.1029/2021GL095440
  12. Kim, J., Bahadori, A., & Holt, W. E. (2021). Crustal Strain Patterns Associated With Normal, Drought, and Heavy Precipitation Years in California. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020JB019560
  13. Wang, J., Church, J. A., Zhang, X., Gregory, J. M., Zanna, L., & Chen, X. (2021). Evaluation of the Local Sea‐Level Budget at Tide Gauges Since 1958. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021GL094502
  14. Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi, H., et al. (2021). Multisystem Synthesis of Radar Sounding Observations of the Amundsen Sea Sector From the 2004–2005 Field Season. Journal of Geophysical Research: Earth Surface, 126(10). https://doi.org/10.1029/2021JF006296
  15. Nakayama, Y., Cai, C., & Seroussi, H. (2021). Impact of Subglacial Freshwater Discharge on Pine Island Ice Shelf. Geophysical Research Letters, 48(18). https://doi.org/10.1029/2021GL093923
  16. Pelle, T., Morlighem, M., Nakayama, Y., & Seroussi, H. (2021). Widespread Grounding Line Retreat of Totten Glacier, East Antarctica, Over the 21st Century. Geophysical Research Letters, 48(17). https://doi.org/10.1029/2021GL093213
  17. Larour, E., Rignot, E., Poinelli, M., & Scheuchl, B. (2021). Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68. Proceedings of the National Academy of Sciences, 118(40). https://doi.org/10.1073/pnas.2105080118
  18. dos Santos, T. D., Morlighem, M., & Seroussi, H. (2021). Assessment of numerical schemes for transient, finite-element ice flow models using ISSM v4.18. Geoscientific Model Development, 14(5), 2545–2573. https://doi.org/10.5194/gmd-14-2545-2021
  19. Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., et al. (2021). Projected land ice contributions to twenty-first-century sea level rise. Nature, 593(7857), 74–82. https://doi.org/10.1038/s41586-021-03302-y
2020
  1. Larour, E., Caron, L., Morlighem, M., Adhikari, S., Frederikse, T., Schlegel, N.-J., et al. (2020). ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17. Geoscientific Model Development, 13(10), 4925–4941. https://doi.org/10.5194/gmd-13-4925-2020
  2. Rückamp, M., Goelzer, H., & Humbert, A. (2020). Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM). The Cryosphere, 14(10), 3309–3327. https://doi.org/10.5194/tc-14-3309-2020
  3. Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J., Morlighem, M., et al. (2020). Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature, 586(7827), 70–74. https://doi.org/10.1038/s41586-020-2742-6
  4. Rückamp, M., Humbert, A., Kleiner, T., Morlighem, M., & Seroussi, H. (2020). Extended enthalpy formulations in the Ice-sheet and Sea-level System Model (ISSM) version 4.17: discontinuous conductivity and anisotropic streamline upwind Petrov–Galerkin (SUPG) method. Geoscientific Model Development, 13(9), 4491–4501. https://doi.org/10.5194/gmd-13-4491-2020
  5. Pelle, T., Morlighem, M., & McCormack, F. S. (2020). Aurora Basin, the Weak Underbelly of East Antarctica. Geophysical Research Letters, 47(9). https://doi.org/10.1029/2019GL086821
  6. Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R., et al. (2020). Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology, 66(260), 891–904. https://doi.org/10.1017/jog.2020.67
  7. Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., et al. (2020). ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14(9), 3033–3070. https://doi.org/10.5194/tc-14-3033-2020
  8. Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., et al. (2020). The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. The Cryosphere, 14(9), 3071–3096. https://doi.org/10.5194/tc-14-3071-2020
  9. Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., et al. (2020). Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+). The Cryosphere, 14(7), 2283–2301. https://doi.org/10.5194/tc-14-2283-2020
  10. Adhikari, S., Ivins, E. R., Larour, E., Caron, L., & Seroussi, H. (2020). A kinematic formalism for tracking ice–ocean mass exchange on the Earth’s surface and estimating sea-level change. The Cryosphere, 14(9), 2819–2833. https://doi.org/10.5194/tc-14-2819-2020
  11. Smith-Johnsen, S., de Fleurian, B., Schlegel, N., Seroussi, H., & Nisancioglu, K. (2020). Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream. The Cryosphere, 14(3), 841–854. https://doi.org/10.5194/tc-14-841-2020
  12. Kavvas, M. L., Tu, T., Ercan, A., & Polsinelli, J. (2020). Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time. Earth System Dynamics, 11(1), 1–12. https://doi.org/10.5194/esd-11-1-2020
  13. Smith‐Johnsen, S., Schlegel, N. ‐J., de Fleurian, B., & Nisancioglu, K. H. (2020). Sensitivity of the Northeast Greenland Ice Stream to Geothermal Heat. Journal of Geophysical Research: Earth Surface, 125(1). https://doi.org/10.1029/2019JF005252
  14. Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., et al. (2020). The causes of sea-level rise since 1900. Nature, 584(7821), 393–397. https://doi.org/10.1038/s41586-020-2591-3
  15. Hamlington, B. D., Frederikse, T., Nerem, R. S., Fasullo, J. T., & Adhikari, S. (2020). Investigating the Acceleration of Regional Sea Level Rise During the Satellite Altimeter Era. Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019GL086528
  16. Delaney, I., & Adhikari, S. (2020). Increased Subglacial Sediment Discharge in a Warming Climate: Consideration of Ice Dynamics, Glacial Erosion, and Fluvial Sediment Transport. Geophysical Research Letters, 47(7). https://doi.org/10.1029/2019GL085672
  17. Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., et al. (2020). Understanding of Contemporary Regional Sea‐Level Change and the Implications for the Future. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019RG000672
2019
  1. Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., et al. (2019). Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13(2), 132–137. https://doi.org/10.1038/s41561-019-0510-8
  2. Yu, H., Rignot, E., Seroussi, H., Morlighem, M., & Choi, Y. (2019). Impact of Iceberg Calving on the Retreat of Thwaites Glacier, West Antarctica Over the Next Century With Different Calving Laws and Ocean Thermal Forcing. Geophysical Research Letters, 46(24), 14539–14547. https://doi.org/10.1029/2019GL084066
  3. Robel, A. A., Seroussi, H., & Roe, G. H. (2019). Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proceedings of the National Academy of Sciences, 116(30), 14887–14892. https://doi.org/10.1073/pnas.1904822116
  4. Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., et al. (2019). initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. The Cryosphere, 13(5), 1441–1471. https://doi.org/10.5194/tc-13-1441-2019
  5. Adhikari, S., Ivins, E. R., Frederikse, T., Landerer, F. W., & Caron, L. (2019). Sea-level fingerprints emergent from GRACE mission data. Earth System Science Data, 11(2), 629–646. https://doi.org/10.5194/essd-11-629-2019
  6. Dai, C., Howat, I. M., Larour, E., & Husby, E. (2019). Coastline extraction from repeat high resolution satellite imagery. Remote Sensing of Environment, 229, 260–270. https://doi.org/10.1016/j.rse.2019.04.010
  7. Larour, E., Seroussi, H., Adhikari, S., Ivins, E., Caron, L., Morlighem, M., & Schlegel, N. (2019). Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science, 364(6444). https://doi.org/10.1126/science.aav7908
  8. Cuzzone, J. K., Schlegel, N.-J., Morlighem, M., Larour, E., Briner, J. P., Seroussi, H., & Caron, L. (2019). The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). The Cryosphere, 13(3), 879–893. https://doi.org/10.5194/tc-13-879-2019
  9. Morlighem, M., Wood, M., Seroussi, H., Choi, Y., & Rignot, E. (2019). Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. The Cryosphere, 13(2), 723–734. https://doi.org/10.5194/tc-13-723-2019
  10. Rückamp, M., Neckel, N., Berger, S., Humbert, A., & Helm, V. (2019). Calving Induced Speedup of Petermann Glacier. Journal of Geophysical Research: Earth Surface, 124(1), 216–228. https://doi.org/10.1029/2018JF004775
  11. dos Santos, T. D., Morlighem, M., Seroussi, H., Devloo, P. R. B., & Simões, J. C. (2019). Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14). Geoscientific Model Development, 12(1), 215–232. https://doi.org/10.5194/gmd-12-215-2019
  12. Rückamp, M., Greve, R., & Humbert, A. (2019). Comparative simulations of the evolution of the Greenland ice sheet under simplified Paris Agreement scenarios with the models SICOPOLIS and ISSM. Polar Science, 21, 14–25. https://doi.org/10.1016/j.polar.2018.12.003
  13. Schlegel, N., & Larour, E. Y. (2019). Quantification of Surface Forcing Requirements for a Greenland Ice Sheet Model Using Uncertainty Analyses. Geophysical Research Letters, 46(16), 9700–9709. https://doi.org/10.1029/2019GL083532
2018
  1. Bondzio, J. H., Morlighem, M., Seroussi, H., Wood, M. H., & Mouginot, J. (2018). Control of Ocean Temperature on Jakobshavn Isbræ’s Present and Future Mass Loss. Geophysical Research Letters, 45(23). https://doi.org/10.1029/2018GL079827
  2. Beyer, S., Kleiner, T., Aizinger, V., Rückamp, M., & Humbert, A. (2018). A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream. The Cryosphere, 12(12), 3931–3947. https://doi.org/10.5194/tc-12-3931-2018
  3. Chu, W., Schroeder, D. M., & Siegfried, M. R. (2018). Retrieval of Englacial Firn Aquifer Thickness From Ice‐Penetrating Radar Sounding in Southeastern Greenland. Geophysical Research Letters, 45(21). https://doi.org/10.1029/2018GL079751
  4. Rückamp, M., Falk, U., Frieler, K., Lange, S., & Humbert, A. (2018). The effect of overshooting 1.5°C global warming on the mass loss of the Greenland ice sheet. Earth System Dynamics, 9(4), 1169–1189. https://doi.org/10.5194/esd-9-1169-2018
  5. Yu, H., Rignot, E., Seroussi, H., & Morlighem, M. (2018). Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws. The Cryosphere, 12(12), 3861–3876. https://doi.org/10.5194/tc-12-3861-2018
  6. Choi, Y., Morlighem, M., Wood, M., & Bondzio, J. H. (2018). Comparison of four calving laws to model Greenland outlet glaciers. The Cryosphere, 12(12), 3735–3746. https://doi.org/10.5194/tc-12-3735-2018
  7. Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C., Limonadi, D., et al. (2018). Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework. The Cryosphere, 12(11), 3511–3534. https://doi.org/10.5194/tc-12-3511-2018
  8. DE FLEURIAN, B., WERDER, M. A., BEYER, S., BRINKERHOFF, D. J., DELANEY, I., DOW, C. F., et al. (2018). SHMIP The subglacial hydrology model intercomparison Project. Journal of Glaciology, 64(248), 897–916. https://doi.org/10.1017/jog.2018.78
  9. Lampkin, D. J., Parizek, B., Larour, E. Y., Seroussi, H., Joseph, C., & Cavanagh, J. P. (2018). Toward Improved Understanding of Changes in Greenland Outlet Glacier Shear Margin Dynamics in a Warming Climate. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00156
  10. Seroussi, H., & Morlighem, M. (2018). Representation of basal melting at the grounding line in ice flow models. The Cryosphere, 12(10), 3085–3096. https://doi.org/10.5194/tc-12-3085-2018
  11. Adhikari, S., Caron, L., Steinberger, B., Reager, J. T., Kjeldsen, K. K., Marzeion, B., et al. (2018). What drives 20th century polar motion? Earth and Planetary Science Letters, 502, 126–132. https://doi.org/10.1016/j.epsl.2018.08.059
  12. Milliner, C., Materna, K., Bürgmann, R., Fu, Y., Moore, A. W., Bekaert, D., et al. (2018). Tracking the weight of Hurricane Harvey’s stormwater using GPS data. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aau2477
  13. Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. I., & Mangerud, J. (2018). Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet. Quaternary Science Reviews, 195, 32–47. https://doi.org/10.1016/j.quascirev.2018.07.004
  14. Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., & Bell, R. E. (2018). Complex Basal Thermal Transition Near the Onset of Petermann Glacier, Greenland. Journal of Geophysical Research: Earth Surface, 123(5), 985–995. https://doi.org/10.1029/2017JF004561
  15. Cuzzone, J. K., Morlighem, M., Larour, E., Schlegel, N., & Seroussi, H. (2018). Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales. Geoscientific Model Development, 11(5), 1683–1694. https://doi.org/10.5194/gmd-11-1683-2018
  16. Haubner, K., Box, J. E., Schlegel, N. J., Larour, E. Y., Morlighem, M., Solgaard, A. M., et al. (2018). Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM. The Cryosphere, 12(4), 1511–1522. https://doi.org/10.5194/tc-12-1511-2018
  17. Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., et al. (2018). Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. The Cryosphere, 12(4), 1433–1460. https://doi.org/10.5194/tc-12-1433-2018
  18. Hamlington, B. D., Burgos, A., Thompson, P. R., Landerer, F. W., Piecuch, C. G., Adhikari, S., et al. (2018). Observation‐Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise. Journal of Geophysical Research: Oceans, 123(3), 2129–2140. https://doi.org/10.1002/2017JC013486
  19. Graham, F. S., Morlighem, M., Warner, R. C., & Treverrow, A. (2018). Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models. The Cryosphere, 12(3), 1047–1067. https://doi.org/10.5194/tc-12-1047-2018
  20. Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., & Blewitt, G. (2018). GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science. Geophysical Research Letters, 45(5), 2203–2212. https://doi.org/10.1002/2017GL076644
2017
  1. Larour, E., Cheng, D., Perez, G., Quinn, J., Morlighem, M., Duong, B., et al. (2017). A JavaScript API for the Ice Sheet System Model (ISSM) 4.11: towards an online interactive model for the cryosphere community. Geoscientific Model Development, 10(12), 4393–4403. https://doi.org/10.5194/gmd-10-4393-2017
  2. Larour, E., Ivins, E. R., & Adhikari, S. (2017). Should coastal planners have concern over where land ice is melting? Science Advances, 3(11). https://doi.org/10.1126/sciadv.1700537
  3. Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., & Wood, M. (2017). Modeling the Response of Nioghalvfjerdsfjorden and Zachariae Isstrøm Glaciers, Greenland, to Ocean Forcing Over the Next Century. Geophysical Research Letters, 44(21). https://doi.org/10.1002/2017GL075174
  4. Hück, A., Bischof, C., Sagebaum, M., Gauger, N. R., Jurgelucks, B., Larour, E., & Perez, G. (2017). A usability case study of algorithmic differentiation tools on the ISSM ice sheet model. Optimization Methods and Software, 33(4–6), 844–867. https://doi.org/10.1080/10556788.2017.1396602
  5. Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 44(21). https://doi.org/10.1002/2017GL074954
  6. Seroussi, H., Ivins, E. R., Wiens, D. A., & Bondzio, J. (2017). Influence of a West Antarctic mantle plume on ice sheet basal conditions. Journal of Geophysical Research: Solid Earth, 122(9), 7127–7155. https://doi.org/10.1002/2017JB014423
  7. Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M., Mouginot, J., et al. (2017). The mechanisms behind Jakobshavn Isbræ’s acceleration and mass loss: A 3‐D thermomechanical model study. Geophysical Research Letters, 44(12), 6252–6260. https://doi.org/10.1002/2017GL073309
  8. Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., & Khazendar, A. (2017). Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 44(12), 6191–6199. https://doi.org/10.1002/2017GL072910
  9. Yu, H., Rignot, E., Morlighem, M., & Seroussi, H. (2017). Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics. The Cryosphere, 11(3), 1283–1296. https://doi.org/10.5194/tc-11-1283-2017
  10. Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., et al. (2017). How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere, 11(2), 949–970. https://doi.org/10.5194/tc-11-949-2017
  11. Åkesson, H., Nisancioglu, K. H., Giesen, R. H., & Morlighem, M. (2017). Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change. The Cryosphere, 11(1), 281–302. https://doi.org/10.5194/tc-11-281-2017
  12. Habbal, F., Larour, E., Morlighem, M., Seroussi, H., Borstad, C. P., & Rignot, E. (2017). Optimal numerical solvers for transient simulations of ice flow using the Ice Sheet System Model (ISSM versions 4.2.5 and 4.11). Geoscientific Model Development, 10(1), 155–168. https://doi.org/10.5194/gmd-10-155-2017
2016
  1. Thompson, P. R., Hamlington, B. D., Landerer, F. W., & Adhikari, S. (2016). Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016GL070552
  2. Larour, E., Utke, J., Bovin, A., Morlighem, M., & Perez, G. (2016). An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11. Geoscientific Model Development, 9(11), 3907–3918. https://doi.org/10.5194/gmd-9-3907-2016
  3. Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., Palmer, S. J., & Bell, R. E. (2016). Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophysical Research Letters, 43(24). https://doi.org/10.1002/2016GL071538
  4. de Fleurian, B., Morlighem, M., Seroussi, H., Rignot, E., van den Broeke, M. R., Kuipers Munneke, P., et al. (2016). A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. Journal of Geophysical Research: Earth Surface, 121(10), 1834–1848. https://doi.org/10.1002/2016JF003842
  5. Thompson, P. R., Hamlington, B. D., Landerer, F. W., & Adhikari, S. (2016). Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016GL070552
  6. SCHROEDER, D. M., SEROUSSI, H., CHU, W., & YOUNG, D. A. (2016). Adaptively constraining radar attenuation and temperature across the Thwaites Glacier catchment using bed echoes. Journal of Glaciology, 62(236), 1075–1082. https://doi.org/10.1017/jog.2016.100
  7. Schlegel, N.-J., Wiese, D. N., Larour, E. Y., Watkins, M. M., Box, J. E., Fettweis, X., & van den Broeke, M. R. (2016). Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012). The Cryosphere, 10(5), 1965–1989. https://doi.org/10.5194/tc-10-1965-2016
  8. Larour, E., & Schlegel, N. (2016). On ISSM and leveraging the Cloud towards faster quantification of the uncertainty in ice-sheet mass balance projections. Computers & Geosciences, 96, 193–201. https://doi.org/10.1016/j.cageo.2016.08.007
  9. MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow, G. D., Colgan, W. T., et al. (2016). A synthesis of the basal thermal state of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 121(7), 1328–1350. https://doi.org/10.1002/2015JF003803
  10. Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., & Larour, E. (2016). Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012). The Cryosphere, 10(3), 1259–1277. https://doi.org/10.5194/tc-10-1259-2016
  11. Rignot, E., Xu, Y., Menemenlis, D., Mouginot, J., Scheuchl, B., Li, X., et al. (2016). Modeling of ocean‐induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters, 43(12), 6374–6382. https://doi.org/10.1002/2016GL068784
  12. Adhikari, S., & Ivins, E. R. (2016). Climate-driven polar motion: 2003–2015. Science Advances, 2(4). https://doi.org/10.1126/sciadv.1501693
  13. Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., & Rebuffi, S. (2016). Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 43(6), 2659–2666. https://doi.org/10.1002/2016GL067695
  14. Adhikari, S., Ivins, E. R., & Larour, E. (2016). ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change. Geoscientific Model Development, 9(3), 1087–1109. https://doi.org/10.5194/gmd-9-1087-2016
  15. MINCHEW, B., SIMONS, M., BJÖRNSSON, H., PÁLSSON, F., MORLIGHEM, M., SEROUSSI, H., et al. (2016). Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux. Journal of Glaciology, 62(231), 147–158. https://doi.org/10.1017/jog.2016.26
  16. Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., & Larour, E. Y. (2016). Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland. The Cryosphere, 10(2), 497–510. https://doi.org/10.5194/tc-10-497-2016
  17. Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., & Rignot, E. (2016). A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophysical Research Letters, 43(5), 2027–2035. https://doi.org/10.1002/2015GL067365
  18. Bracegirdle, T. J., Bertler, N. A. N., Carleton, A. M., Ding, Q., Fogwill, C. J., Fyfe, J. C., et al. (2016). A Multidisciplinary Perspective on Climate Model Evaluation For Antarctica. Bulletin of the American Meteorological Society, 97(2), ES23–ES26. https://doi.org/10.1175/BAMS-D-15-00108.1
2015
  1. Le Morzadec, K., Tarasov, L., Morlighem, M., & Seroussi, H. (2015). A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle. Geoscientific Model Development, 8(10), 3199–3213. https://doi.org/10.5194/gmd-8-3199-2015
  2. MacGregor, J. A., Li, J., Paden, J. D., Catania, G. A., Clow, G. D., Fahnestock, M. A., et al. (2015). Radar attenuation and temperature within the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 120(6), 983–1008. https://doi.org/10.1002/2014JF003418
  3. Khazendar, A., Borstad, C. P., Scheuchl, B., Rignot, E., & Seroussi, H. (2015). The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers. Earth and Planetary Science Letters, 419, 199–210. https://doi.org/10.1016/j.epsl.2015.03.014
  4. Kleiner, T., Rückamp, M., Bondzio, J. H., & Humbert, A. (2015). Enthalpy benchmark experiments for numerical ice sheet models. The Cryosphere, 9(1), 217–228. https://doi.org/10.5194/tc-9-217-2015
  5. Schlegel, N. ‐J., Larour, E., Seroussi, H., Morlighem, M., & Box, J. E. (2015). Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model. Journal of Geophysical Research: Earth Surface, 120(1), 29–54. https://doi.org/10.1002/2014JF003359
2014
  1. Larour, E., Utke, J., Csatho, B., Schenk, A., Seroussi, H., Morlighem, M., et al. (2014). Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model). The Cryosphere, 8(6), 2335–2351. https://doi.org/10.5194/tc-8-2335-2014
  2. Larour, E., Schlegel, N., & Morlighem, M. (2014). Modeling the Evolution of Polar Ice Sheets. Eos, Transactions American Geophysical Union, 95(45), 411–411. https://doi.org/10.1002/2014EO450005
  3. Seroussi, H., Morlighem, M., Larour, E., Rignot, E., & Khazendar, A. (2014). Hydrostatic grounding line parameterization in ice sheet models. The Cryosphere, 8(6), 2075–2087. https://doi.org/10.5194/tc-8-2075-2014
  4. Larour, E., Khazendar, A., Borstad, C. P., Seroussi, H., Morlighem, M., & Rignot, E. (2014). Representation of sharp rifts and faults mechanics in modeling ice shelf flow dynamics: Application to Brunt/Stancomb‐Wills Ice Shelf, Antarctica. Journal of Geophysical Research: Earth Surface, 119(9), 1918–1935. https://doi.org/10.1002/2014JF003157
  5. Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., & Makinson, K. (2014). Seabed topography beneath Larsen C Ice Shelf from seismic soundings. The Cryosphere, 8(1), 1–13. https://doi.org/10.5194/tc-8-1-2014
  6. Van Wessem, J. M., Reijmer, C. H., Morlighem, M., Mouginot, J., Rignot, E., Medley, B., et al. (2014). Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 60(222), 761–770. https://doi.org/10.3189/2014JoG14J051
  7. Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 7(6), 418–422. https://doi.org/10.1038/ngeo2167
  8. Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., & Nowicki, S. (2014). Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth, 5(1), 569–584. https://doi.org/10.5194/se-5-569-2014
  9. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. (2014). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41(10), 3502–3509. https://doi.org/10.1002/2014GL060140
  10. Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., & Larour, E. (2014). High-resolution ice-thickness mapping in South Greenland. Annals of Glaciology, 55(67), 64–70. https://doi.org/10.3189/2014AoG67A088
2013
  1. Borstad, C. P., Rignot, E., Mouginot, J., & Schodlok, M. P. (2013). Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. The Cryosphere, 7(6), 1931–1947. https://doi.org/10.5194/tc-7-1931-2013
  2. Morlighem, M., Rignot, E., Mouginot, J., Wu, X., Seroussi, H., Larour, E., & Paden, J. (2013). High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. Journal of Glaciology, 59(218), 1015–1023. https://doi.org/10.3189/2013JoG12J235
  3. Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., & Mouginot, J. (2013). Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. Journal of Glaciology, 59(218), 1024–1034. https://doi.org/10.3189/2013JoG13J054
  4. Morlighem, M., Seroussi, H., Larour, E., & Rignot, E. (2013). Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. Journal of Geophysical Research: Earth Surface, 118(3), 1746–1753. https://doi.org/10.1002/jgrf.20125
  5. Nowicki, S., Bindschadler, R. A., Abe‐Ouchi, A., Aschwanden, A., Bueler, E., Choi, H., et al. (2013). Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research: Earth Surface, 118(2), 1025–1044. https://doi.org/10.1002/jgrf.20076
  6. Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden, A., Bueler, E., Choi, H., et al. (2013). Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. Journal of Geophysical Research: Earth Surface, 118(2), 1002–1024. https://doi.org/10.1002/jgrf.20081
  7. Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., & Box, J. E. (2013). Decadal‐scale sensitivity of Northeast Greenland ice flow to errors insurface mass balance using ISSM. Journal of Geophysical Research: Earth Surface, 118(2), 667–680. https://doi.org/10.1002/jgrf.20062
  8. Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., et al. (2013). Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). Journal of Glaciology, 59(214), 195–224. https://doi.org/10.3189/2013JoG12J125
  9. Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. A., et al. (2013). Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. Journal of Glaciology, 59(215), 410–422. https://doi.org/10.3189/2013JoG12J129
2012
  1. Larour, E., Morlighem, M., Seroussi, H., Schiermeier, J., & Rignot, E. (2012). Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F4), n/a-n/a. https://doi.org/10.1029/2012JF002371
  2. Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M. P., & Seroussi, H. (2012). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law. Geophysical Research Letters, 39(18). https://doi.org/10.1029/2012GL053317
  3. Larour, E., Schiermeier, J., Rignot, E., Seroussi, H., Morlighem, M., & Paden, J. (2012). Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA. Journal of Geophysical Research: Earth Surface, 117(F2). https://doi.org/10.1029/2011JF002146
  4. Seroussi, H., Ben Dhia, H., Morlighem, M., Larour, E., Rignot, E., & Aubry, D. (2012). Coupling ice flow models of varying orders of complexity with the Tiling method. Journal of Glaciology, 58(210), 776–786. https://doi.org/10.3189/2012JoG11J195
  5. Larour, E., Seroussi, H., Morlighem, M., & Rignot, E. (2012). Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of Geophysical Research: Earth Surface, 117(F1), n/a-n/a. https://doi.org/10.1029/2011JF002140
2011
  1. Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2011). A mass conservation approach for mapping glacier ice thickness. Geophysical Research Letters, 38(19), n/a-n/a. https://doi.org/10.1029/2011GL048659
  2. Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H., & Kristensen, S. S. (2011). Ice flux divergence anomalies on 79north Glacier, Greenland. Geophysical Research Letters, 38(9). https://doi.org/10.1029/2011GL047338
  3. Khazendar, A., Rignot, E., & Larour, E. (2011). Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula. Geophysical Research Letters, 38(9). https://doi.org/10.1029/2011GL046775
2010
  1. Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2010). Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophysical Research Letters, 37(14), n/a-n/a. https://doi.org/10.1029/2010GL043853
2009
  1. Khazendar, A., Rignot, E., & Larour, E. (2009). Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf. Journal of Geophysical Research, 114(F4). https://doi.org/10.1029/2008JF001124
2007
  1. Khazendar, A., Rignot, E., & Larour, E. (2007). Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method. Geophysical Research Letters, 34(19). https://doi.org/10.1029/2007GL030980
2005
  1. Larour, E. (2005). Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geophysical Research Letters, 32(5). https://doi.org/10.1029/2004GL021693
2004
  1. Larour, E., Rignot, E., & Aubry, D. (2004). Processes involved in the propagation of rifts near Hemmen Ice Rise, Ronne Ice Shelf, Antarctica. Journal of Glaciology, 50(170), 329–341. https://doi.org/10.3189/172756504781829837
  2. Larour, E. (2004). Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophysical Research Letters, 31(16). https://doi.org/10.1029/2004GL020077